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1 Introduction

Since the work of E6tvos [1], the torsion pendulum has been used with progressively increasing sensitivity to
search for differential acceleration of materials with differing composition in the gravitational field of source
masses at various ranges [2,3,4,5,6,7].

The torsion pendulum is extraordinary in its ability to measure extremely weak slowly varying forces,
and hence has been the instrument of choice for most tests of the equivalence principle (EP) for the last
century. However, it has nearly reached the limits of its abilities when operated at room temperature. The
logical next step is to operate torsion pendulums at cryogenic temperatures.

1.1 Advantages of a cryogenic pendulum

Low thermal noise Thermal noise torque driving a pendulum is proportional to 1/kpT/Q and is thus
reduced directly by an order of magnitude through operation at 2K, and by an additional order of magnitude
due to the greatly increased QQ possible at low temperature.

Frequency stability. A promising way to determine the strength of the interaction of a pendulum
with an external field is to measure the change that the interaction produces in the pendulum’s torsional
oscillation frequency. However, this method is severely limited at room temperature by systematic error
and random noise in the oscillation frequency arising from temperature variation of the pendulum and its
torsion fiber. This problem is greatly reduced at low temperature, because the temperature dependence of
the fiber’s shear modulus and of the pendulum’s dimensions becomes very small, and also because of the
excellent temperature control that may be maintained at low temperature.

Highly effective magnetic shielding A thin lead shield wrapped around the instrument’s vacuum
chamber in its cryogenic environment pins magnetic field lines, isolating the pendulum from changes in
magnetic field as the orientation of a source mass is varied.

Ultrahigh vacuum A very high vacuum may be easily attained in the pendulum’s environment, using
a charcoal “cryopump” near the pendulum to supplement an ion pump operating at room temperature.



2 Pendulum operation mode

A difference Aa in horizontal acceleration of a pair of test mass materials suspended symmetrically on
a torsion pendulum is reflected in a torque N(0) = Nysin(f), where 6 is the angular orientation of the
pendulum relative to a field source and the peak torque is Ny = p.Aa. Here p. is the “composition dipole
moment” of the pendulum: p, = [ prdV, where p is the density of one of the two test mass materials. The
ratio of the torque amplitude p.Aa to the pendulum’s torsion constant s gives a dimensionless measure of
the signal: € = (p./k)Aa.

There are three distinct modes in which the pendulum may be used to measure €, as discussed by Paul
Boynton [8] whose University of Washington group developed two of them. The modes differ dramatically
in their relative sensitivity to two major sources of systematic and random error: temperature variation and
tilt.

Deflection method. Here the signal is the displacement A6 of the pendulum from its equilibrium
position, related to € by Af = € for small e. The pendulum remains nearly stationary either relative to a
fixed instrument, or to a continuously rotating instrument as in the method pioneered by the “Eot-Wash”
group [7] also at the University of Washington. A major advantage of the continuous rotation variant of the
deflection method is its ability to vary the orientation of the pendulum relative to a field source without
stressing the torsion fiber. Both variants of the deflection method are very sensitive to instrument tilt and
to temperature variation, putting severe demands on the control of these environmental factors.

Frequency method. Here the signal is a shift in the torsional oscillation frequency of the pendulum,
given for small € by % = %e where A is the amplitude in radians of the pendulum’s oscillation, and J;
is a Bessel function. Optimal signal/noise is achieved for an amplitude A=1.841 radians. Use of this method
in the search for anomalous forces was pioneered by Boynton’s group. With this method, systematic error
arising from instrument tilt is very small compared to the deflection method — a very significant advantage,
since instrument tilt associated with varying floor loading or heating is one of the most troublesome error
sources in gravity experiments using pendulums. A serious problem with the frequency method however is
its sensitivity to temperature variation, which limits its capability when operating at room temperature.

Second harmonic method. Here the signal is a second harmonic distortion of the pendulum’s oscil-
lation: 6(t) = A cos(wt) + 2J2(A)e cos(2wt) + ..., in response to a torque N(#) = Nocos(d) where again
€ = Np/k. This method, developed by our University of Washington authors, is extraordinarily insensitive
to temperature variations and is even more insensitive to tilt than is the frequency method. A drawback
of this method however is that it can not take full advantage of the reduced thermal noise of a cryogenic
pendulum. For additive noise in the crossings, the second harmonic method yields a signal-to-noise ratio
that can be one to two orders of magnitude less favorable than that of the frequency method under ideal
conditions.

Choice of method. The temperature sensitivity problem of the frequency method may be overcome if
the pendulum is operated at low temperature, making this the method of choice.

3 The EP test program: accessible parameter space

Ultimately, satellite-based tests of the EP promise far greater sensitivity than can be achieved with a terres-
trial torsion pendulum, if an equivalence violation is assumed to be associated with a force of infinite range,
but a cryogenic terrestial torsion pendulum can improve upon current existing limits. Furthermore satellite-
base tests have greatly reduced sensitivity to an equivalence violation arising from possible non-Newtonian
interactions with ranges below about one hundred kilometers.



Such deviations from Newtonian behavior can be characterized by a two-body potential energy of the
form
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where A is the range of this putative new interaction and «qo is its strength. The notation «qo reflects
a possible composition dependence of the interaction strength, which may be made explicit in terms of

“charges” q:
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where (g/p); is the ratio for mass i of its total charge q to its mass in atomic mass units. Natural candidates
for an effective charge include B (baryon number), N-Z (neutron excess), or indeed mass (in which case there
would be no composition dependence) [9)].

We plan to make EP tests with three different field source masses: a laboratory-scale mass, a mountain,
and the sun. This allows the exploration of widely different regions in the interaction range parameter \.

I. To probe for relatively short range interactions, a laboratory source mass will revolve at periodic
intervals about a fixed torsion pendulum instrument. The source mass in this case will be a 1.4 ton stainless
steel mass assembly mounted on an air bearing [10]. The signal will be modulated with a relatively short
period, probably about two hours. The pendulum’s housing remains stationary in this mode. The closest
distance between elements of the pendulum and of the source mass is more than 20 cm, so that high order
couplings between pendulum and source are intrinsically small and may be nulled with high precision.

II. To probe with high sensitivity most of the A\ parameter range above about 100 meters, the pendulum
together with its housing is to be rotated at periodic intervals in the laboratory. Here both an adjacent
mountain which rises 724 meters above our experimental site and the earth as a whole serve as source mass.
However, the need to rotate the pendulum together with its housing in the lab raises an issue that must be
addressed with care. Due to the anelastic properties of the torsion fiber, this instrument rotation causes a
small temporary shift in pendulum oscillation frequency which dies away on a mixture of time scales [11].
The magnitude of this effect is inversely proportional to the Q of the fiber, and hence is reduced by using
a fiber with high Q. Further, if the velocity profile G(t) of the instrument’s rotation is precisely the same as
it is periodically rotated first from 0 to w and then from 7 to 0 in a steady state repetition pattern, there
should be no effect on the frequency difference measured in the two instrument orientations. Such precise
rotation control should be achievable using a high precision angular encoder. Nevertheless, fiber anelastic
effects may be the limiting factor in this operation mode.

III. To probe the A\ parameter range above about 10'® meters, the sun will be used as source mass,
modulated by the rotation of the earth. In this parameter range the projected sensitivity is comparable to
that afforded in principle by method II, with the advantage of avoiding the need to rotate the instrument.

Our planned EP test program targets sensitivity to differential test mass acceleration at a level of
107 cm/s?. Figure 1 illustrates with dotted lines the 20 constraints that an instrument with such sen-
sitivity could place on an interaction of the form of equation 2 for the particular case where charge q=B
(baryon number). The figure compares these constraints with those which are potentially achievable with a
space-based test such as STEP [12].
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Figure 1: Present and potential 20 constraints on a new force coupling to baryon number (equation 2).
The dotted lines are constraints that might be achieved with a torsion pendulum having sensitivity da=
10~ 1em/s?. The solid lines labeled “lab source”, “hill”, and “earth”, are existing constraints from the work
of the Eot-Wash group [6,7]. The line labeled 1/1? is a constraint from a previous inverse square law test [13].
The lines labeled LAGEOS, lunar ranging, Mercury, and Mars are from Nordtvedt’s analysis of planetary
and satellite orbital data [14]. The dashed line is the projected constraint ability of the proposed satellite
EP test STEP.

4 Apparatus

4.1 The EP pendulum
4.1.1 Pendulum design

The pendulum for the equivalence principle experiments will carry test masses of magnesium and beryllium,
materials with good contrast in both N-Z (neutron excess) and B (ratio of baryon number to mass). Two
spheres of each material will rest on each of two trays of a fused silica holder (Figure 2). The two trays
are connected by a set of four rods. Each ball is to rest on a trio of fused silica hemispheres (not shown)
bonded flat side down to a tray. Mirror faces on the lower segment of the pendulum serve for optical position
readout. Nominal mass multipole moments of the pendulum vanish for all £ through ¢ = 4, excepting £, m
= 4,4, but including £,0 moments. (The 4,4 moment may be nulled by rotating the top layer by 7 relative
to the lower layer, at small cost to signal sensitivity.) In the present design the pendulum will carry its eight
12-gram masses at a radius of 2.8 cm, giving a composition dipole moment p. (dipole moment of one test
mass material only) 121 g cm. It will be suspended by a 50 pum CuBe fiber with torsion constant 1.6 dyn
cm/rad, giving a torsional period of 180 seconds with a Q of about 80,000. To achieve symmetry in mass
distribution, the magnesium and beryllium balls will be machined to be as close to identical in diameter as
possible. The magnesium balls will be of an alloy adjusted to be slightly denser than beryllium. The mass of



the slightly heavier magnesium balls will then be reduced to match that of the beryllium balls by drilling six
small holes at the six points where the axes of a Cartesian coordinate system centered on the ball intersect
its surface.

Figure 2: The planned EP test pendulum design with beryllium and magnesium test mass balls on a fused
silica carrier. Shown is the current pendulum design and a rendering of an earlier similar design with a
central shaft.

4.1.2 Pendulum mass moments

Among the most worrisome sources of systematic error in an EP experiment is the coupling of small (nomi-
nally zero) m=1 mass multipole moments of the pendulum to m=1 derivatives of the ambient gravitational
field. In principle these moments may be made negligible by an iterative process in which the pendulum’s
mass distribution is trimmed after experimentally determining the pendulum’s response to deliberately ex-
aggerated field gradients. This mass trimming will be enabled by a set of split-ring trim masses, one gripping
each of the four vertical rods which span the gap between the pendulum’s trays. Vertical adjustment of these
trim masses will permit cancelation of residual m=1 moments for £ = 2 and ¢ = 3. The augmented field
gradients will be produced as described in section 4.3 below.

In practice this procedure will be limited not only by error in positioning of the trim masses but also
by the reproducibility of the pendulum’s mass distribution at low temperature after a cycle of warming,
adjustment, and recooling. Reproducibility in our design will be enhanced through the use of a stable
fused silica carrier and spherical test masses which on cooling contract more than the carrier and thus drop
slightly on their mount with reproducibility limited only by deviation from sphericity. The placement of the
supporting hemispheres will take into account the different contractions of the two materials.

4.2 Nulling and monitoring ambient field gradients.

To minimize Newtonian gravitational interactions that can simulate an EP violation signal, it is important
not only to trim the pendulum to reduce its low order mass moments, but also to null ambient gravity field
gradients as well as possible. This will be done as follows [10]. Before operating the EP pendulum, another
pendulum with a deliberately very large ¢, m =2,1 moment will operate in its place. This “exaggerated 2,1
moment” pendulum (Figure 4d) will be used to determine the ¢ = 2, m = 1 component of the ambient
gravitational field. By operating with a set of different pendulum heights it is possible also to determine the
m=1 ambient field moments for /=3 and even 4. Masses may then be arranged to largely null these field
moments.



A remaining problem is the time variation of the ambient field moments — associated with rainfall, changes
in underground water table height, atmospheric pressure changes, movement of equipment in the lab, etc.
If necessary, we will monitor such gradient variation continuously while the test is in progress. This will be
accomplished using a pair of auxiliary “exaggerated 2,1 moment” torsion pendulums located on opposite sides
of the EP pendulum, operating at room temperature as independent instruments. The angular orientation
of the auxiliary pendulums will be varied at frequent intervals so that each monitors both components of
the 2,1 gradient at its location. The average of the gradients read by the two auxiliary instruments will then
be a good measure of the gradient at the position of the operating EP pendulum. If we find that the field
gradients vary at a level that limits our EP sensitivity, then we plan to implement an active compensation
system which will either pump water between stationary tanks or move suspended metal masses along a
vertical axis.

4.3 The local source mass

For the short-range EP violation search we will use a source mass originally constructed for use in a test of the
gravitational inverse square law at distances on the order of 15 centimeters [10,15]. This is a 1.4 ton assembly
of stainless steel cylinders (Figure 3) configured to produce a highly uniform horizontal gravitational field
at the pendulum position. Expressed in a spherical harmonic expansion, the field due to this source mass
has no nominal m=1 contribution for ¢ = 2 through 8. This source mass, which is outside the cryogenic
environment, will rotate around the pendulum at periodic intervals on its air bearing base.

Figure 3: The local source mass. Layers of trays carrying solid stainless steel cylinders are separated by
hollow stainless steel tubes in an arrangement which creates an extremely uniform gravitational field at the
location of the EP pendulum. Height of the assembly is about 1.8 m.

Residual low-order m=1 moments of this source mass will be detected by measuring their effect on the
same “exaggerated 2,1 moment” pendulum that was used to determine the £ = 2, m = 1 component of the



ambient gravitational field. Such measurements made at a set of different vertical positions of the pendulum
can be used to measure not only the { = 2, m = 1 but also the £ = 3, m = 1 and in principle even higher ¢
m=1 moments of the gravitational field generated by the local source mass [15].

Modifications (Figure 4) of the local source mass, configured to generate at the pendulum’s position a
deliberately large £ =2, m = 1 or £ = 3, m = 1 field moment, will be used in the procedure described in
section 4.1.2 above for trimming the EP pendulum’s corresponding multipole moments.
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Figure 4: Source mass and pendulum configurations for diagnosing undesired Newtonian gravitational cou-
plings in the EP experiment: (a) Source mass configuration designed to generate a field coupling to a residual
¢,m = (2,1) mass moment of the EP pendulum. (b) Configuration to couple to a 3,1 mass moment. (c)
Configuration coupling to a 4,1 mass moment. (d) Pendulum with deliberate large 2,1 mass moment, to be
used in testing for residual (2,1), (3,1), and (4,1) field moments of the source mass of Figure 3. The source
masses are about 1.8 meters high, while the pendulum is about 0.1 meters high.

4.4 The cryogenic environment.

The pendulum is to be suspended in a currently operating 3 meter high dewar (Figure 5) holding about 90
liters of liquid helium, which lasts about four days between fills. The dewar may be rotated on precision
bearings under computer control to excite torsional oscillations of a pendulum, or to rotate the pendulum’s
equilibrium position relative to source fields. A vacuum chamber (Figure 6) within the dewar houses the
pendulum. Temperature control of the pendulum’s environment is maintained in four stages: The vacuum
chamber is maintained at 4.2K by the main helium reservoir. Within the vacuum chamber a stage is
maintained at 2.0K by a pumped helium pot. A cylindrical shield, with weak thermal coupling to this stage,
is held near 2.3K by a PID-controlled heater. The pendulum hangs from yet another stage held near 2.4 by
another PID-controlled heater. When working well, control is maintained at this stage to within about 20
pK.



4.5 Remote underground lab

Turntables

Figure 5: Dewar and cryostat in operation at the Richland site, shown configured for a measurement of the
gravitational constant G.

The experiment will operate in a former Nike missile bunker near Richland, Washington, now converted
into the Battelle Gravitational Physics Laboratory (BGPL). The BGPL is located on an arid lands ecology
preserve with highly restricted access, on a slope leading to the base of a treeless 1106 meter high basalt
mountain. The natural seismic background at this location is unusually low, while the site’s 4.8 km distance
from the nearest trafficked road makes the cultural vibration contribution also extremely low. It has a modest
workshop and library, electronics assembly rooms, hoists, mechanical pumps, and a winched stairway cart
for lowering liquid helium storage dewars into the bunker. Seven tons of lead are stacked in a configuration
designed to null gravity gradients at the location of our cryostat. Five networked PC computers serve in the
lab for experiment control and data logging.

5 Performance limitations

We have studied the theoretical limitations on torsion pendulum performance imposed by thermal, seismic,
and readout noise sources [16] and by Newtonian gravitational couplings and the effects of nonlinear and
anelastic behavior of torsion fibers [17]. Application of these analyses to an earlier EP pendulum design



liquid helium bath

at 4.2K
capillary
fill tube B s | inner helium pot
e e I | U at2.0K
pumping tube | C ®
E %—I . inner structure
: i at2.3K
magnetic 5l K
damper > \ ~._pendulum
. . suspension
] 3 at 2.4K

light source and .._[* [
split photodiode

pendulum

Figure 6: Details of the pendulum environment within the cryostat. Not shown are a recently installed
bounce mode damping system and four tiltmeters.

was discussed in reference [18]. In the following we review these limitations for our current EP pendulum
design, and conclude that our target of sensitivity to differential accelerations as small as 10~ **em/s? is
reasonable. However, we also find that the performance of our cryogenic torsion pendulum currently in use
for a measurement of the gravitational constant G falls short of that required for our target EP sensitivity,
for reasons yet to be identified.

5.1 Expected noise levels

An uncertainty dw in the measurement of the EP torsion pendulum’s oscillation frequency leads to a cor-
responding uncertainty in the differential acceleration of the test masses: da = ﬁ%’, where k is the
pendulum’s fiber torsion constant, A its oscillation amplitude, and p. its composition dipole moment. For
the parameters of the pendulum discussed here one finds da = (0.044cm/ 52)%‘“. In the following, contribu-
tions to %‘“
uncertainty for a one day run, written as %\/M. Correspondingly, uncertainties in differential acceleration
are expressed as dav/day.

measurement uncertainty which diminish with the square root of run time are expressed as the

5.1.1 Direct thermal noise

Thermal (kpT) noise contributes a v/ Hz uncertainty %‘“ = % Zﬁ—;‘g For the parameters above and temper-
ature 3K, %’(thermal) =7 x 10713/day, or a = 3 x 10~ em/s%\/day.



5.1.2 Indirect thermal noise

Variation in the temperature of the torsion fiber introduces noise in the pendulum’s oscillation frequency
through the temperature dependence k(T) of its torsion fiber. For the CuBe fiber we expect to use, we have
found % ~ 5 x 107K~ at 4 K. For our recent data runs in our measurement of the gravitational
constant G, the spectral density of the temperature variation of the fiber suspension point has been typically
6T ~ 5 x 107°K/v/Hz at a signal modulation frequency 0.022 mHz. These data imply a contribution to the

pendulum’s frequency noise: 22 ~ 8 x 1071%\/day, or da = 3.5 x 10~ em/s2\/day.

5.1.3 Readout system noise

The torsional period of the pendulum is determined using an optical lever to record the instants at which
the pendulum is at a given angular position. Light from an 870 nm LED is brought to the focal plane of the
optical lever with an optical fiber, collimated by a lens, and directed to a mirrored face on the pendulum.
The reflected beam is focused to a spot of about 62 um diameter, which traverses a split photodetector
as the pendulum rotates. Readout signal/noise ratio could be made almost arbitrarily high by increasing
the light intensity, but this intensity must be limited to avoid significant heating of the pendulum. To
minimize heating, the light source will be active only during short intervals in which it can give useful
information. For a 100 W light source we calculate a pendulum frequency noise: 22 ~ 2 x 107'%\/day, or

da = 8 x 10~ 5em/s%\/day.

5.1.4 Seismic noise

Rotational components of seismic noise are expected to be the most important components. Little data exists
on such noise. The one estimate available to us (data from a site in New Zealand) suggests a ‘%’ contribution
at our pendulum frequency noise on the order of 22 ~ 6 x 10713\/day , or da ~ 3 x 10~ *cm/s%\/day. This
value is the most uncertain in our expected noise budget.

5.1.5 Combined noise levels.

The quadrature sum of the noise levels discussed so far is about %‘" ~ 1.2 x 107'2\/day, or da = 5 x
10~ *em/s?y/day. This assumes all these noise sources have a constant power density (white noise).

5.1.6 Instrument tilt

Tilt of the pendulum’s environment is likely to be correlated with a modulated signal of interest, and
can be a significant problem, even though the frequency method is relatively insensitive to tilt. With our
highly asymmetric “G” pendulum we measure a tilt sensitivity %" =7 x 10~°/rad, while a symmetric room
temperature pendulum currently used for an EP test has an even lower sensitivity: %“’ =5x107%/rad. With
an assumption that tilt can be monitored and controlled at an integrated level 10~ radians, the lower of
these sensitivities implies a maximum signal error 22 = 5 x 10714 or da = 2 x 107*¢m/s? (an error that
need not decrease with run time). In preparation for the EP test we have equipped our instrument with a set
of four tilt meters (two for each axis), which operate near the torsion pendulum within its vacuum chamber
in the cryogenic environment to ensure that the measured tilt is representative of that experienced by the
pendulum’s immediate support framework (Figure 7).
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Figure 7: Design of the four tiltmeters installed in the pendulum’s cryogenic environment.

5.2 Empirical noise experience in measuring G

Extensive data has been accumulated in a measurement of G using a cryogenic torsion pendulum. The
pendulum used is a thin 11 gram fused silica plate suspended in a vertical plane. Three torsion fibers have
been used in the course of this work: a 20 um diameter CuBe fiber used “as drawn”, a similar fiber that
was heat treated, and a 25 um diameter Al5056 fiber as drawn. Frequency noise associated with each of
these fibers has varied with time, but the “as drawn” CuBe fiber appears to give the best performance.
The noise levels when scaled to indicate the frequency noise we would experience with the planned EP
pendulum suggest a differential acceleration sensitivity da ranging from about 400 x 10~ '4em/s%\/day to
about 1200 x 10~ 4cm /s2y/day. At best this corresponds to a performance about 80 times worse than would
be indicated by the analysis in the previous section, and would allow an EP test with only marginally better
sensitivity than current room temperature experiments.

We are making an intensive effort to identify the source(s) of this excess noise. The observed frequency
noise has no significant correlation with ambient seismic levels. It appears to have roughly comparable
contributions from readout noise (error in zero crossing determination) and from noise which is intrinsic to
the motion of the pendulum, such as kT thermal noise. For a fit to the zero crossing times of N consecutive
oscillation cycles, error in period measurement from white readout noise is expected to decline as N—3/2
while the contribution from thermal noise should decline only as N~/2 providing a tool to distinguish
these noise types. Analysis of the bipolar voltage signal associated with the transit of the imaged light spot
across the split photodetector indicates that the readout noise is predominantly amplifier noise rather than
photon shot noise. Both amplifier and shot noise could be reduced by employing a light source with greater
intensity. We have been using an LED light source because of its incoherence and ease of modulation, but
are at the limits of the intensity of suitable commercially available LEDs (about 100uW). Superluminescent
LEDs offer higher intensity, but have displayed high noise levels in our bench tests. Low coherence length
lasers are a possibility that we are exploring.

Observed frequency noise levels for the G pendulum using the three quite different fiber types do not
differ by a large factor (= 2), which suggests that the large excess noise is not intrinsic to the torsion fiber.
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For each of the three fiber types the same technique was used to attach them at each end: the fiber is centered
in a short segment of 1.5 mm OD aluminum tube, with the inner volume of the tube filled with Stycast 1266
epoxy cured at room temperature. It is possible that this interface of the fiber with its upper mount and
with the pendulum is a source of excess noise. We plan to test different attachment methods: (1) soldered
attachment, (2) 1266 Stycast epoxy cured at high temperature (said to produce a harder material), (3)
epoxy attachment after building up the diameter of the fiber by electroplating with copper or other plating
material, and (4) gripping the fiber by pinching it between metal jaws. We also plan to test a sapphire fiber.
The smallest diameter sapphire fiber that we have found to be commercially available is about 70 pum, which
is too stiff to be useful. We will attempt to reduce this diameter by polishing with diamond grit, ideally to
a diameter of about 30 pm.

We have explored the possibility that the excess noise is associated with “bounce mode” vertical oscillation
of the pendulum as its fiber stretches in response to seismic motion. We adapted our eddy current swing
mode damping system so that it also damps bounce mode oscillation. Like the original system, the new
system (Figure 8) uses a relatively stiff upper fiber coupled to an electrically conducting disk from which
the main torsion fiber hangs, with the disk positioned symmetrically between a pair of ring magnets. Swing
mode oscillation of the pendulum is communicated to the disk, from which energy is absorbed by induced
eddy currents. In the modified system the upper fiber is mounted to a leaf spring as shown in the figure,
allowing the disk to move vertically, and the ring magnets are of different diameters so that the flux linking
annular regions of the disk varies as the disk moves vertically, with corresponding eddy current damping.
The addition of the bounce mode damping was concurrent with a switch from CuBe to Al5056 fiber, so
relative effects of the two changes can not be distinguished, but there was no evident reduction in the
observed pendulum frequency noise. This was not surprising, given the lack of observed correlation between
pendulum frequency noise and measured ambient seismic noise.

leaf spring

thick upper fiber
ring magnet

B flux conducting disk

ring magnet

L

+

Figure 8: The bounce mode damping system. Magnetic flux linking the damping disk produces eddy currents
that damp both horizontal swing and vertical “bounce” pendulum oscillation modes.

There is a possibility that the excess noise may arise from oscillation modes associated with the de-
liberately large quadrupole moment of the “G” pendulum. To test this possibility we are constructing a
pendulum with nominally zero quadrupole moment. This will be used in the tests of various fiber mounting
schemes and in the development of an improved optical readout. We remain hopeful that we can achieve EP
sensitivity at a level of about da = 10714em/s? for an integration time not more than 100 days. We believe
the cryogenic torsion pendulum remains the best hope for achieving such sensitivity for source field ranges
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less than tens of kilometers.
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