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Abstract. A measurement ofG which will use a torsion pendulum in the ‘dynamic’
(time-of-swing) mode, measuring the influence of field source masses on the pendulum’s
oscillation period, is being prepared at UC Irvine. Features of the design include:
(i) operation at cryogenic temperature (2 K) to reduce thermal noise and increase frequency
stability and for ease of magnetic shielding, (ii) large pendulum oscillation amplitudes to
increase signal-to-noise ratio and reduce the effect of amplitude-determination error, (iii) use
of a pair of source mass rings to produce an extremely uniform field gradient; and (iv) use of
a thin quartz plate as a torsion pendulum to minimize sensitivity to pendulum density
inhomogeneity and dimensional uncertainties. The ‘dynamic’ method to be used has the
great advantage of requiring no angular displacement measurement or calibrating force, but,
as pointed out by Kuroda, the method is subject to systematic error associated with the
anelastic properties of a torsion fibre. We demonstrate that, for the linear anelasticity
discussed by Kuroda, the fractional error introduced by anelasticity in such measurements of
G is bounded by 06 δG/G 6 1

2Q
−1, whereQ is the torsional oscillation quality factor of

the pendulum. We report detailed studies of anelasticity in candidate fibre materials at low
temperature, concluding that anelastic behaviour should not limit ourG measurement at a
level of a few ppm.

Keywords: G, gravitational constant, cryogenic torsion pendulum, torsion balance, torsion
pendulum, anelasticity

1. Introduction

Many of the determinations of Newton’s gravitational
constantG in this century have used a torsion pendulum
in a ‘dynamic’ mode, in which a pendulum suspended by
a thin fibre undergoes torsional oscillation in the presence
of source masses whose gravitational fields couple to the
pendulum’s mass multipole moments. Torsional frequencies
are compared for two different positions of the source
masses. The difference1ω2 of the squares of the two
measured frequencies is proportional to the gravitational
constant:1ω2 = cG, where the proportionality factorc
is a known function of the mass distributions and positions
of the pendulum and source masses and of the pendulum’s
oscillation amplitude, but (for an ideal torsion fibre) requires
no knowledge of the fibre’s torsion constant. The method
has several nice features: it is based on a measurement
of frequency which can be made with high precision; no
precision measurements of angular displacements need be
made; and the result is apparently independent of the
value of the fibre’s torsion constant. However, it has long
been suspected that non-ideal fibre properties may lead to
unexpected errors inG measurements with this method and
Kuroda [1] has shown that anelastic fibre properties do in
fact produce such an error through an effective frequency

dependence of the torsion constant. Recently reported
measurements ofG, as well as measurements now in progress
or proposed, have mostly either avoided the use of a torsion
fibre altogether, or use a fibre in a mode such that it is
never subject to significant torsional strain. Other recent
approaches use a bifilar suspension [2] or a flat fibre [3]
so that the dominant restoring torque on a pendulum is
gravitational in origin, thus minimizing possible effects of
fibre anelasticity.

The several virtues of the ‘dynamic’ torsion pendulum
method suggest that it may still be the best approach to
the measurement ofG, even using a single round-section
fibre, if anelastic fibre effects are sufficiently well understood
and sufficiently small. In the following section we describe
the experiment we are developing at UC Irvine for aG
measurement using a cryogenic torsion pendulum operating
in the dynamic mode, and discuss several novel features of
our approach. In subsequent sections we address the issue of
anelastic effects. We extend Kuroda’s treatment of linear
anelastic fibre effects by deriving an upper bound on the
effect they can have in aGmeasurement. We report precision
studies of the anelastic properties of candidate fibre materials
at low temperature, which reveal a non-linear component of
their behaviour which is of considerable intrinsic interest.
We reconsider the error bound forG in the light of this
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Figure 1. The source-mass and pendulum configuration.

behaviour, and discuss consistency checks that can be made
using different fibre materials and oscillation amplitudes to
ensure that theGmeasurement can be made reliably at a level
of a few parts per million. We also discuss other error sources,
including noise in torsional period measurement introduced
by the coupling of the pendulum’s rocking oscillation modes
into the torsional mode.

2. The planned UC Irvine G measurement

2.1. The method

The planned experiment determinesG by measuring the
change in oscillation frequency of a thin-plate torsion
pendulum when a pair of ring-shaped source masses (figure 1)
is moved so that their symmetry axis is alternately parallel and
perpendicular to the plane of the pendulum in its equilibrium
position.

The source-mass rings produce an extremely uniform
gravitational field gradient at the position of the pendulum,
making the measurement highly insensitive to error in
pendulum position. The use of a thin plate as the pendulum
makes the measurement very insensitive to uncertainty in
the pendulum’s exact dimensions and mass distribution.
(Such use of a thin plate and also the use of source masses
configured to produce a very uniform field gradient has
been independently suggested and implemented by Jens
Gundlach see [4]). The pendulum will operate in a cryogenic
environment at 2 K, which has several advantages: thermal
noise is greatly reduced (directly through the low temperature
and indirectly through the higher mechanicalQ); the stability
of the pendulum’s oscillation frequency is greatly increased
both by the excellent temperature control possible at low
temperature and because the temperature dependences of
the pendulum dimensions and fibre shear modulus become
small at low temperature; and other fibre properties such
as strength and equilibrium-position stability improve at
low temperature. An advantage of our design is that
the pendulum will operate in a relatively large chamber,
minimizing pendulum–wall interactions, and will be far
from the source mass, reducing sensitivity to source-mass
inhomogeneity and placement error. A price paid for these
advantages is a small signal strength: the fractional frequency
shift in our experiment will be three orders of magnitude
smaller than that in the 1982 experiment of Luther and Towler
[5], implying a greater sensitivity to various noise sources,
especially microseismic noise.

The experiment will operate in a former Nike missile
bunker on an arid-lands environmental preserve at Hanford
in Eastern Washington, where the microseismic background

1 m

Figure 2. The cryogenic insert within its Dewar flask and
source-mass rings suspended from a turntable.

noise is extremely low. The basic instrument being built for
theG measurement was originally designed to be used for
a test of the equivalence of inertial and gravitational mass
using a pendulum carrying test masses of two types; it will
later serve this purpose as well with minimal modifications.
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Figure 3. Details of the temperature-controlled levels, pendulum optical readout and damping.

2.1.1. Design details. Figure 2 is a scale drawing showing
the size and relative positions of the source-mass rings, the
pendulum and the evacuated pendulum housing within the
liquid helium Dewar flask.

2.1.1.1. The helium Dewar flask. The Dewar flask is
46 cm in diameter, 290 cm in height and accommodates a
30 cm diameter insert; its helium-holding time is expected to
be about 8 days. The Dewar flask is mounted on a turntable
which is belt-driven by a stepper motor; by periodically
rotating the Dewar flask in alternate directions, the torsional
oscillations of the pendulum within it may be resonantly
driven to any desired amplitude.

2.1.1.2. The source mass rings. The two source-mass
rings will hang outside the Dewar flask at room temperature,
suspended by 1.3 mm diameter Kevlar thread from a turntable
near the top of the Dewar flask. Three rings have been
fabricated for us by the Los Alamos National Laboratory;
they are made of OFHC copper, with outside diameter
52.07 cm, inside diameter 31.24 cm, width 4.83 cm and mass
59 kg. To minimize mass changes due to surface oxidation,
the rings are plated with an 8µm non-magnetic coating of
nickel with 9% phosphorus. The density of the plating is
close to that of the copper, minimizing errors arising from
uncertainty in the plating thickness. A dimensionally critical

64.8 cm spacing of the two rings will be maintained by a pair
of 8 mm diameter fused silica rods extending between them.

2.1.1.3. The pendulum and torsion fibre. The pendulum
is being fabricated of Corning 7980-0AA fused silica, with
dimensions 40 mm by 40 mm by 3 mm and mass 10.9 g.
The four sides of the pendulum form mirror surfaces, coated
with a 100 nm layer of aluminium and a 27 nm layer of SiO2.
An aluminium coating was chosen in preference to gold to
minimize uncertainty in mass distribution associated with
uncertainty in coating thickness. The pendulum suspension
has two stages: an upper relatively thick short fibre which
suspends an aluminium damping disc between a pair of
ring magnets; and a 30 cm long main torsion wire which
extends from this disc down to the pendulum. Eddy-current
damping in the disc serves to damp swinging modes of the
pendulum without significantly reducing the mechanicalQ

of the torsional oscillation mode. The main torsion wire
will normally be 25µm diameter Al5056, loaded by the
pendulum to about 35% of its breaking strength. With this
fibre the pendulum will have a torsion constant of about
0.036 dyn cm rad−1 and an oscillation period of 130 s.
Data will also be collected using a 20µm diameter CuBe
fibre; comparison of these data with data obtained using an
aluminium fibre will provide a test for possible fibre-related
systematic error in the determination ofG.
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2.1.1.4. Temperature control. Figure 3 shows details
of the pendulum temperature-control system and optics
within the vacuum chamber in which the pendulum operates.
Four levels of temperature control are to be maintained.
The helium within the main Dewar-flask volume will be
pressure controlled to maintain a temperature near 4.2 K.
A thermally isolated secondary helium chamber within the
vacuum chamber will draw helium through a capillary tube
from the main chamber. By pumping on this chamber at a
rate governed by a germanium temperature sensor and PID
control system, the temperature of a plate coupled to the
chamber will be maintained near 2.0 K. An inner framework
and enclosure is suspended from this plate with thermally
isolating legs; a sensor/heater/PID system will maintain
this framework near 2.1 K. Finally, the pendulum is to be
suspended from a small platform mounted with thermally
isolating legs to the 2.1 K framework. This platform will
have its own sensor/heater/PID system which will maintain
it at a precisely controlled temperature near 2.15 K. With this
multi-level system we expect to maintain temperature control
of the torsion fibre to at least within 100µK, probably much
better, even when refilling the main Dewar-flask volume
with helium. During installation and initial cooling down,
a platform will be raised to support and cool the pendulum.
This cooldown platform is linked by flexible copper strips
to the 2.1 K enclosure and may be raised by Kevlar threads
extending through the main vacuum tube up to a shaft coupled
to a rotary vacuum feedthrough at room temperature. We
plan to bring the contents of the vacuum chamber to an
initial temperature of about 6 K by introducing helium gas;
after pumping out this gas the time constants for cooling
the instrument components to temperatures below their final
operating temperatures should be of the order of a few hours.

2.1.1.5. The optical readout. Four independent optical
levers view the pendulum, positioned at 90◦ intervals about
the torsion fibre axis. Two of these are portrayed in
figure 3. The four optical systems are identical in their
mass distribution, thus increasing the mass symmetry about
the pendulum. A 62.5 µm optical fibre delivers the light
of an LED at room temperature to the focal plane of each
optical lever. Light emitted at this point passes through a
lens 16 cm below, is reflected towards the pendulum by a
45◦ mirror and then reflected by the pendulum—when the
pendulum’s mirror face is perpendicular to the optical axis—
back through the same path to a focus on a two-element
PIN split photodiode just beside the end of the optical fibre.
For two of the optical levers, the axis of the dividing line
between the photodiode elements is aligned perpendicularly
to the path traversed by the imaged light spot as the pendulum
rotates—the zero crossing of the amplified differential signal
from the photodiode elements serves to accurately record the
times at which the pendulum has one of a set of discrete
angular orientations.

To minimize heating of the pendulum by absorption of
light power, the LED light sources will be activated only
during the few milliseconds during which they can provide
useful information—the required timing and duration of
these illumination intervals can be accurately predicted after
information from the first few pendulum-oscillation cycles
has been analysed by the computer.

2.2. The analysis formalism and key design features

2.2.1. The formalism. The gravitational torque on a
torsion pendulum due to a field source-mass distribution may
be expressed as

N(θ) =
∑
lm

imqlma
∗
lm e−imθ (2.1)

whereθ is the angular displacement of the pendulum relative
to the source-mass distribution and theqlm are the mass
multipole moments of the pendulum, given by

qlm =
∫
p

ρp(r)r
lY ∗lm(θ, φ)d3r (2.2)

where the integral is over the pendulum’s densityρp(r) in a
body-fixed coordinate system. Thealm are the field multipole
moments of the source mass, given by

alm = − 4πG

2l + 1

∫
s

ρs(r)

rl+1
Y ∗lm(θ, φ)d3r (2.3)

where the integral is over the source mass densityρs(r) in
a space-fixed coordinate system with its origin centred on
the pendulum. If the pendulum executes torsional oscillation
with amplitudeθ0, its natural frequencyω0 will be shifted by
the gravitational torque:

ω2 = ω2
0 −

2

θ0I

∑
lm

mqlma
∗
lmJ1(mθ0) (2.4)

whereI is the pendulum’s moment of inertia. The special
feature of the ring source masses is that they generate a field
characterized byalm which vanish for̀ = 1, 3, 4, 5—for odd
`by symmetry; for̀ = 4 as a result of a particular ring spacing.
(For a thin ring of diameterD this spacing isL = D cot(θ),
whereθ is a zero of the Legendre polynomialP4(cosθ).) The
resulting field, expressed in a Cartesian coordinate system
with its origin centred between the rings and with the ring
symmetry axis taken to be thex axis, is a potential8(x, y, z)
proportional to−2x2+y2+z2+O(x6, y6, z6). Thus the rings’
field couples almost purely to the pendulum’s quadrupole
moment.

Lettingω+ andω− represent the pendulum’s oscillation
frequencies corresponding to the two orientations of the ring
source masses, one finds that the pendulum’s frequency shift
associated with the change in ring source-mass positions is
given to within a few ppm by

1ω2 ≡ ω2
+ − ω2

− ≈ 16|a22| |q22|
I

J1(2θ0)

θ0
(2.5)

which we may write in the form

1ω2 ≈ Ksource J1(2θ0)

θ0

(
Q2

I

)
G (2.6)

whereG is the gravitational constant to be determined,
Q2 = (32π/15)1/2q22 andKsource is a factor dependingonly
on the source-mass distribution relative to the pendulum.
Written in this form, we see that1ω2 depends on the
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Figure 4. The relative signal strength1ω2/ω2 and signal-to-noise ratio as functions of the oscillation amplitude. Oscillation amplitudes
near the extrema of the signal-strength curve will be used in measuringG.

properties of the pendulum only through the ratio of its
quadrupole momentQ2 to its moment of inertiaI , with

I =
∫
ρ(r)(x2 + y2) d3r (2.7)

Q2 =
∫
ρ(r)(x2 − y2) d3r (2.8)

where they axis in the integrals is the direction in which the
pendulum is thin.

2.2.2. The advantages of ring source masses and a thin
pendulum. We now see the benefits of the rings and a thin
pendulum. (i) On comparing equations (2.7) and (2.8) we see
that the ratioQ2/I in equation (2.6) (and hence the measured
value ofG) depends only very weakly on the pendulum’s
size and mass distribution if the pendulum is thin. That the
dependence of equation (2.6) on pendulum mass distribution
is almost purely through the ratioQ2/I is a consequence
of the absence of̀ = 3, 4 and 5 couplings of the source-
mass rings. (ii) The factorKsource in equation (2.6) proves
to be extremely insensitive to displacement of the pendulum
relative to the source masses—again a consequence of the
absence of̀ = 3, 4 and 5 couplings. In our design the
pendulum may be misplaced by as much as 5 mm horizontally
or 10 mm vertically without creating more than a 1 ppm error
in theG measurement.

2.2.3. Higher order effects on∆ω2. Corrections must
be made to equation (2.6) due to contributions to1ω2 from
terms with` = 6 andm = 2 and 6 in equation (2.4). These
calculable corrections are a few ppm.

2.2.4. Large-amplitude operation. Figure 4 displays the
relative frequency shift produced by the source rings as a
function of the pendulum’s torsional oscillation amplitudeθ0.
The pendulum will operate at the several large amplitudes
(2.57, 4.21, 5.81 and 7.40 radians) at which1ω2 is an

extremum and hence very insensitive to uncertainty inθ0.
(Optical lever timing signals from the four mirrored side
faces of the pendulum can determineθ0 to within microradian
accuracy in a single cycle.) Because of the decay in amplitude
with time due to the finiteQ of the pendulum, it will be
necessary to begin a run with an amplitude which is about
50 mrad larger than one corresponding to an extremum
and to limit the run duration so that the amplitude remains
close enough to the extremum value to afford sufficient
insensitivity to amplitude-measurement error. For an Al5056
fibre, the allowed continuous run time ranges from 6 days, for
oscillation within 50 mrad of the 2.57 amplitude, to 2 days
near the 7.40 amplitude. The change in oscillation period
when the source rings are moved will range from 1.6 ms
at the 2.57 amplitude to 0.33 ms at the 7.40 amplitude.
Noise contributions to frequency measurement decrease with
amplitude as 1/θ0, so that the signal-to-noise ratio drops
more slowly than does the signal at the larger amplitudes.
Comparison ofG determinations performed at various
oscillation amplitudes will provide an important check for
effects of fibre nonlinearities and background torques, which
vary with amplitude.

2.3. Metrology issues and noise sources

2.3.1. Metrology. The most critical measurements are of
the mass and dimensions of the source rings and of the length
of the fused silica rods which maintain the ring spacing. Our
goal is to keep the contribution to the totalG error budget of
each individual metrology component below 1 ppm, which
requires that the ring ID, OD and width must each be known
to 1µm and the rod length to 0.5 µm. The spacing of the
rings’ suspension points is relatively non-critical. The rings
have an awkward mass and shape for precision measurement;
initial mass measurement at the NIST will probably not be
better than 2 ppm inaccuracy. Density measurements of
copper stock from which the rings were cut indicate that
the density variation over each ring’s volume is no more
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than about 30 ppm, while the critical average variation over
the ring’s radius is of the order of 5 ppm, which would
produce an error inG of less than 1 ppm if it were ignored.
The thermal expansion of the copper rings poses a serious
problem, because the temperature in the missile bunker where
the experiment is to be run varies seasonally by as much as
10 K. A 30 mK error in the temperature of the rings relative
to the temperature at which they were measured will cause a
1 ppm error inG. The rings’ temperature will be monitored
by platinum resistance thermometers embedded in them.

2.3.2. ThermalkT noise. This contributes an uncertainty
in the measured period of a torsion pendulum:

δτ ≈ τ

θ0

(
kBT

kω0Q

)1/2

t−1/2 (2.9)

whereτ , ω0, k,Q andθ0 are respectively the period, angular
frequency, torsion constant, quality factor and oscillation
amplitude of the pendulum andt is the duration of the
measurement. Evaluated for the parameters of our pendulum
andθ0 = 2.57, this implies a 0.04 ppmδG contribution for
a measurement duration of 1 week.

2.3.3. Temperature variation. Variation in the
temperature of the pendulum’s fibre will change its
torsion constant, introducing a noise source in frequency
measurements. Fortunately the fractional variation of
the shear modulus with temperature for Al5056 at low
temperature is extremely small, of the order of 2×10−7 K−1

[6]. For aG error contribution<1 ppm in 1 week we need
only ensure that the noise spectrum for temperature variation
is less than about 0.3 K Hz−1/2 at the signal frequency of
about 1 mHz, which should not be difficult.

2.3.4. Sensor shot noise.The light intensity to be used in
the optical lever is a compromise between a low photon shot
noise (favouring a high intensity) and a small temperature rise
of the pendulum from absorption of light power (favouring
a low intensity). We calculate that a light intensity low
enough to raise the pendulum’s temperature by less than 1 mK
should introduce a shot-noise contribution toG error of about
0.5 ppm for 1 week of measurement.

2.3.5. Gravitational noise Noise from changing ambient
mass distributions is difficult to estimate, but should be
extremely small at our signal frequency at our remote site,
except possibly during the winter rainy season.

2.3.6. Rotational microseismic noise. This introduces a
period timing error given by

δτ = τ

2θ0
[θ2(ω0)]

1/2t−1/2 (2.10)

where θ2(ω0) is the noise spectrum for rotational ground
motion,τ , ω0 andθ0 are respectively the pendulum’s period,
angular frequency and amplitude andt is the measurement
duration. A few data on rotational seismic noise exist [7],
which are approximately fitted byθ2(f ) = 10−23f −2 in the
frequency range 0–20 mHz. Assuming this function, the
contribution to ourG error for 1 week of measurement would
be 0.04 ppm.

2.3.7. Linear microseismic noise—the coupling of
swinging modes to torque. The coupling of swinging
modes into the torsional mode of a pendulum is a source of
noise which has been analysed by Speake and Gillies [8] and
extensively by Karagiozet al [9]. One finds that a pendulum
which is rotating with instantaneous angular velocityθ̇ about
a horizontal axis experiences an angular acceleration about
the vertical fibre axis given by

9̈ = I2 − I1
2I3

sin(29)θ̇2 (2.11)

where I1, I2 and I3 are the moments of inertia of the
pendulum about its body-fixed principal axes and9 is the
angle between the horizontal rotation axis and principal axis
number 1. To estimate how much ourG measurement may
be affected by torsion noise coupled by this mechanism, we
performed a computer simulation, modelling our compound
pendulum which has three elements: an upper fibre extending
from a lab-fixed pivot down to a mass at which horizontal
damping is applied, with a torsion fibre extending from this
damping point down to a square thin pendulum body. The
equations of motion were determined for the system’s seven
degrees of freedom: three angles in each vertical plane,
plus a rotational degree of freedom about the vertical axis
for the pendulum body, using small-angle approximations
for all but the vertical axis rotation. In the simulation, the
pendulum was ‘set in torsional oscillation’ with an amplitude
corresponding to that in our plannedG measurement, while
a horizontal acceleration noise spectrum was simulated for
the upper suspension point in both horizontal directions, with
the spectral shape matching that observed at our experiment
site. The equations of motion for the system with this driving
force were integrated through multiple cycles of the torsional
oscillation, while noting the RMS variationδτ (RMS) in
torsional period determined by the apparent zero crossings
of the torsional variable9. The resulting value ofδτ (RMS)
proved to be proportional to the square of the driving noise
spectrum, as would be expected from equation (2.11). The
simulation was repeated for various degrees of the damping;
for optimal damping the results when extrapolated to the very
low seismic noise amplitudes measured at our Hanford site
indicate that the contribution toG error of noise through this
coupling mechanism should be negligible—about 0.001 ppm
for 1 week of measurement.

2.3.8. Other vibration issues. Vertical microseismic
motion can couple into torsional noise through nonlinearities
in the fibre’s response to vertical spring-type oscillation
modes of the pendulum—we have no estimate of this error.
We also do not know how much vibration noise will be
contributed by the evaporating helium, although we do know
that this is small compared with other sources of vibration
noise at our lab in Irvine. It should also be noted that there
may be ‘snap-crackle–pop’ noise originating in our fibre
and/or mounts which is not accounted for in the preceding
paragraphs.

2.3.9. Empirical noise estimation. We have used data
taken with an azimuthally symmetrical pendulum in our
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lab at Irvine to put an upper limit on the total noise to be
expected from all sources except for gravitational sources
and swing–torque coupling effects. Data from a 10 h run in
1996 were treated as a fakeGmeasurement, in which source
rings were imagined to have been moved. The (zero) ‘period
difference signal’ in this mock experiment was measured to
within an accuracy of 130 ns; this noise level would permit
aG measurement to about 40 ppm in a period of 1 week.
Seismic noise will be nearly two orders of magnitude smaller
at our Hanford site and our temperature control will be vastly
better with the new apparatus. Hence we are optimistic that
noise levels at the Hanford site will not contribute more than
a few ppm to uncertainty in aGmeasurement lasting 1 week.

3. Effects of fibre nonlinearity and anelasticity

3.1. A bound onG measurement error from linear fibre
anelasticity

Kuroda [1] has shown that, in aG measurement using
the dynamic method, the frequency dependence of the
effective fibre torsion constant can introduce a systematic
error. Kuroda evaluated this error for the case discussed by
Quinn et al [10] of an anelastic material characterized by
a continuum Maxwell model [11] with a particular assumed
distribution of relaxation strengths. Kuroda also showed that,
if the imaginary part of the torsion constant is a fixed fraction
φ of the real part, then the fractional bias inGwill be equal to
Q−1/π , whereQ is the pendulum’s quality factor. Here we
show that, if the fibre anelasticity is described by a continuum
Maxwell model withanydistribution of relaxation strengths,
the resulting errorδG/G will be bounded between 0 and
1
2Q
−1(+O(Q−2)).
Let the complex torsion constant be expressed as

k(ω) = k0 + k1(ω) + ik2(ω), where k0, the ‘relaxed’ (zero
frequency) limit ofk, is the dominant term. In the dynamic
method ofGmeasurement, the presence of the source masses
effectively changesk0. The resulting effective change in
k, which determines the oscillation frequency, includes an
indirect contribution fromk1(ω) due to the frequency shift.

If this contribution is neglected the resulting error inG
determination is

δG

G
=
(
∂ Rek

∂k0
− 1

)
= ∂k1

∂ω2

∂ω2

∂k0
≈ ∂k1

∂ω2

ω2

k0
. (3.1)

In the continuum Maxwell model,k1 andk2 are expressed
in terms of a distribution of relaxation strengthsF(τ)
(F(τ) = δEf (τ) in the notation of Quinnet al [10]):

k1(ω) =
∫ ∞

0
F(τ)

ω2τ 2

1 +ω2τ 2
dτ (3.2)

k2(ω) =
∫ ∞

0
F(τ)

ωτ

1 +ω2τ 2
dτ. (3.3)

From equations (3.1) and (3.2) we find

δG

G
= 1

k0

∫ ∞
0
F(τ)

ω2τ 2

(1 +ω2τ 2)2 dτ
. (3.4)

TheQ of the pendulum is given approximately byk0/k2, so

1

Q
= 1

k0

∫ ∞
0
F(τ)

ωτ

1 +ω2τ 2
dτ. (3.5)

Here ω is the pendulum’s oscillation frequency. Equa-
tion (3.4) differs from (3.5) only by an extra factor
ωτ/(1 +ω2τ 2) in the integrand which has a value6 1

2 for all
values ofτ . Because the other factors in the integrands are all
positive, we find the following bound onGerror in the general
model discussed by Kuroda: 06 δG/G 6 1

2Q
−1 +O(Q−2),

where the higher order term O(Q−2) reflects the approxima-
tion made in equation (3.1).

3.2. Measurements of fibre properties at low
temperature

For the past several years we have been measuring theQ’s of
symmetrical torsion pendulums using various fibre materials
(tungsten, sapphire, CuBe and Al5056) at low temperature, in
search of materials offering the highestQ. Al5056 appears
to be the best choice, yielding aQ at 4.2 K which is over
300 000. The1

2Q
−1 bound onG error then suggests that
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Figure 6. 1ω2/ω2 versus amplitude for a CuBe fibre, compared with expectation (solid lines) for a stick–slip mechanism (equation (3.7)).

the systematic bias due to anelasticity in our plannedG

measurement should be less than 2 ppm.
However, Kuroda’s analysis and our extension of it

assume linear anelasticity. In that framework the effective
torsion constant will depend on frequency but cannot depend
on oscillation amplitude. But, in fact we find a significant
dependence ofQ on amplitude: for an Al5056 fibre,Q varies
by about 20% between zero amplitude and the range of shear-
stress amplitudes involved in the projectedG measurement.
To study such behaviour we have concentrated our attention
on a CuBe fibre, for which the amplitude dependence is ten
times larger.

Figure 5 displays measured values ofQ−1 for
azimuthally symmetric pendulums using fibres of Al5056
and CuBe, as a function of the oscillation amplitude. Note
that, for the CuBe fibre,Q−1 is an extremely linear function
of amplitude, with a slope which is nearly the same at 4.2
and 77 K but with a zero-amplitude intercept differing by
a factor of 3.5 at these two temperatures. The amplitude
dependence is not associated with the Stycast 1266 epoxy
fibre mount: amplifying the epoxy-related loss by a factor of
five by placing four drops of epoxy along the fibre changes
the zero amplitude limit of theQ−1 plot significantly but not
its slope (figure 5(d)).

These data suggest that the CuBe fibre’s internal friction
has two independent contributions:Q−1 = Q−1

I (T ) +Q−1
II

(A), where Q−1
I is temperature dependent but amplitude

independent, while Q−1
II is amplitude dependent but not

temperature dependent. The temperature independence of
Q−1
II suggests that no time-dependent relaxation is involved in

its underlying mechanism and therefore that the mechanism
should be frequency independent and thus not a source
of bias in theG measurement. A linear dependence of
Q−1 on amplitude is characteristic of a ‘stick-slip’ model
of hysteretic loss—a model which is in fact frequency
independent. This model also predicts a dependence of
the oscillation frequencyω2 on amplitudeA, related to the
amplitude-dependent part of Q−1 by

1ω2/ω2 = −(3π/4)1Q−1

where
1ω2 = ω2(A)− ω2(0)

and
1Q−1 = Q−1(A)−Q−1(0).

This relation is closely satisfied by our data if we include
a contribution to1ω2 which must arise from an elastic
coefficientk3 in the conservative part of the torsion constant:
τ = −(kθ + · · ·+k3θ

3 + · · ·). We determinek3 very precisely
from our data by measuring the harmonic it produces in the
pendulum’s torsional oscillation:

θ(t) = A sin(ωt) + · · · + −A
3

32

k3

k
sin(3ωt) + · · · . (3.6)

Including the contribution ofk3 to ω2 and assuming a
stick–slip contribution, we then expect

1ω2(A)

ω2
= −3π

4
1Q−1(A) +

3

4

k3

k
A2. (3.7)

Figure 6 compares our measured1ω2(A) with this relation.
The coefficient of1Q−1(A) inferred by fitting our data
equals the factor 3π/4 expected from stick–slip to within
25% at 77 K and to within better than 1% at 4.2 K.

3.3. Implications for aG measurement

We have demonstrated that linear anelasticity need not limit
a G measurement at a level down to about 2 ppm or less.
(We note, however that the result of a recent experiment by
Kuroda et al [12] suggests that the frequency dependence
of a fibre’s torsion constant may exceed the limit we have
derived in section 3.1.) Our measurements give strong
evidence that the amplitude-dependent component of the
damping we observe arises from a stick–slip mechanism
which, being frequency-independent, will have negligible
influence on theGmeasurement. In any case, the amplitude-
dependent component ofQ−1 is only a small fraction
of the total damping in our planned experiment: at an
oscillation amplitude of 2.57 radians it contributes 25% of
the damping using a CuBe fibre, and less than 10% of the
(smaller) damping using an Al5056 fibre. Let us suppose
that the amplitude-dependent component isnot frequency-
independent, but in fact contributes a fractionalG error given
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byQ−1
II /π like that expected for linear anelasticity. Then, for

the aluminium fibre this error contribution would range from
0.08 ppm at oscillation amplitude 2.57 radians to 0.22 ppm
at 7.40 radians, whereas the contributions for the CuBe fibre
would range from 0.8 ppm to 2.3 ppm. Correspondingly, the
totalG error introduced by anelasticity for these amplitudes
would (if it were ignored) range from 1.0 to 1.2 ppm for the
Al5056 fibre, and from 3.5 to 5.0 ppm for the CuBe fibre.

Attention must also be paid to effects of elastic fibre non-
linearity and to torques on the pendulum arising from lab-
fixed electromagnetic or gravitational fields. These generate
a torque on the pendulum of the form:

N(θ) = −(k1θ +k2θ
2 +k3θ

3)+
∑

[an cos(nθ)+bn sin(nθ)].

To first order these torque terms contribute nothing to the
change in pendulum-oscillation frequency when the source
masses are moved. Numerical integrations of the equations
of motion demonstrate that, at higher order, these terms
affect aG measurement by less than 1 ppm. Since the
coefficients in this equation may be experimentally measured
with high precision, these effects pose no problem for aG

measurement.
We conclude that fibre-related problems need not

introduce more than a 3 ppm uncertainty into aG
measurement with our apparatus. Ultimately the absence of
significant fibre-related error in our measurement ofG must
be demonstrated by the consistency of measurements made
at various amplitudes with fibres of varying properties.
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